DEPARTMENT OF LICENSING AND REGULATORY AFFAIRS

DIRECTOR'S OFFICE

OCCUPATIONAL HEALTH STANDARDS

(By authority conferred on the director of the department of licensing and regulatory affairs by sections 14 and 24 of 1974 PA 154, MCL 408.1014 and 408.1024; and Executive Reorganization Orders Nos. 1996-1, 1996-2, 2003-1, 2008-4, and 2011-4, MCL 330.3101, 445.2001, 445.2011, 445.2025 and 445.2030)

PART 601. AIR CONTAMINANTS FOR CONSTRUCTION

R 325.60151 Construction air contaminants; scope; applicability; replacement of O.H. rules.

Rule 1. (1) An employer shall ensure that employee exposures to inhalation, ingestion, skin absorption, or contact with any material or substance at a concentration above those specified in the "Threshold Limit Values of Airborne Contaminants for 1970" of the American Conference of Governmental Industrial Hygienists, as listed in R 325.60154 to R 325.60161, are avoided.

(2) To achieve compliance with subrule (1) of this rule, an employer shall ensure that administrative or engineering controls are implemented whenever feasible. If administrative or engineering controls are not feasible to achieve full compliance, then protective equipment or other protective measures shall be used to keep the exposure of employees to air contaminants within the limits prescribed in this rule. Any equipment and technical measures used for this purpose shall first be approved for each particular use by a competent industrial hygienist or other technically qualified person. Respirators shall be used in a manner that is in compliance with occupational health standard part 451 "Respiratory Protection," R 325.60051 to R 325.60052.

(3) Occupational health standard part 302 "Vinyl Chloride," R 325.51401 to R 325.51414, applies to the exposure of every employee to vinyl chloride in every employment and place of employment covered by these rules in place of any different standard on exposure to vinyl chloride that would otherwise be applicable by virtue of subrule (1) of this rule.

(4) The "Threshold Limit Values (TLV) of the American Conference of Governmental Industrial Hygienists (A.C.G.I.H.) for 1970" appear in R 325.60153 to R 325.60161. The Threshold Limit Values identified in these rules as Maximum Allowable Concentrations (MAC) are specified in the rules that follow.

(5) These rules do not apply to the following types of employment:

- (a) Agriculture.
- (b) Domestic.
- (c) Mining.
- (d) General industry work.

Exposure to air contaminants in general industry work is covered by occupational health standard part 301 "Air Contaminants for General Industry," R 325.51101 to R 325.51108.

(6) These rules replace O.H. rule 6201.

History: 2002 AACS; 2013 AACS.

R 325.60151a Availability of referenced standards.

Rule 1a. The following Michigan occupational safety and health standards are referenced in these rules. Up to 5 copies of these standards may be obtained at no charge from the Michigan Department of Licensing and Regulatory Affairs, MIOSHA Standards Section, 7150 Harris Drive, P.O. Box 30643, Lansing, Michigan, 48909-8143 or via the internet at website: <u>www.michigan.gov/mioshastandards</u>. For quantities greater than 5, the cost, as of the time of adoption of these rules, is 4 cents per page.

(a) Occupational health standard part 301 "Air Contaminants for General Industry," R 325.51101 to R 325.51108.

(b) Occupational health standard part 302 "Vinyl Chloride," R 325.51401 to R 325.51414.

(c) Occupational health standard part 303 "Methylenedianiline," R 325.50051 to R 325.50076.

(d) Occupational health standard part 304 "Ethylene oxide," R 325.51151 to R 325.51177.

(e) Occupational health standard part 306 "Formaldehyde," R 325.51451 to R 325.51477.

(f) Occupational health standard part 307 "Acrylonitrile," R 325.51501 to R 325.51527.

(g) Occupational health standard part 308 "Inorganic Arsenic," R 325.51601 to R 325.51628.

(h) Occupational health standard part 309 "Cadmium," R 325.51851 to R 325.51886.

(i) Occupational health standard part 311 "Benzene," R 325.77101 to R 325.77115.

(j) Occupational health standard part 312 "1,3-Butadiene," R 325.50091 to R 325.50092.

(k) Occupational health standard part 313 "Methylene Chloride," R 325.51651 to R 325.51652.

(1) Occupational health standard part 314 "Coke Oven Emissions," R 325.50101 to R 325.50136.

(m) Occupational health standard part 451 "Respiratory Protection," R 325.60051 to R 325.60052.

(n) Occupational health standard part 602 "Asbestos Standards for Construction," R 325.51301 to R 325.51302.

(o) Occupational health standard part 603 "Lead Exposure in Construction," R 325.51991 to R 325.51992.

(p) Occupational health standard part 604 "Chromium (VI) in Construction," R 325.51995 to R 325.51997.

History: 2013 AACS.

R 325.60152 Definitions pertaining to contaminants.

Rule 2. As used in these rules:

(a) "Maximum allowable concentration" or "MAC" means the threshold limit value or the time-weighted average 8-hour airborne concentration of a contaminant to which a person may be safely exposed.

(b) "Mg/m3" means milligrams of particulate per cubic meter of air.

(c) "Mppcf" means millions of particulates per cubic foot of air based on impinger samples counted by light field microscopic techniques.

(d) "Non-respirable atmosphere" means an atmosphere which contains insufficient oxygen, or an elevated level of contaminants which may render a person incapable of self-rescue.

(e) "Ppm" means parts of vapor or gas per million parts of air by volume at 25 degrees Celsius and 760 millimeters of mercury pressure.

(f) "Source" means a process or equipment that releases a contaminant into the air in concentrations exceeding the MAC.

History: 2002 AACS.

R 325.60153 Contaminants; exposures; MAC.

Rule 3. (1) An employer shall not allow an employee to be exposed to a contaminant at concentrations in excess of the MAC as listed in R 325.60154 to R 325.60161.

(2) An employer shall not allow an employee to be exposed to a contaminant or combination of contaminants in concentrations that are hazardous or injurious to the person's health.

History: 2002 AACS.

R 325.60154 Maximum allowable concentrations.

Rule 4. (1) Maximum allowable concentrations of air contaminants based on a repeated 8-hour work day exposure are listed in tables 1 to 7 in R 325.60155 to R 325.60161.

(2) A substance in tables 1 to 6 that is preceded by the letter A, C, ΘF S, or STEL is an especially hazardous contaminant and all the following precautions shall be taken:

(a) If the substance is preceded by the letter "A", then an employer shall ensure that an employee or any part of an employee's anatomy is not exposed to, or allowed to come in contact with, the substance by means of any respiratory, oral, or skin route.

(b) If the substance is preceded by the letter "C", then its MAC means the highest concentration at which an employer may allow a person to be exposed at any time unless noted otherwise. This concentration is commonly referred to as a "ceiling."

(c) If the substance is preceded by the letter "S", then an employer shall ensure that precautions are taken to prevent skin absorption.

(d) If the substance is preceded by "STEL", then it means the STEL listed. For example, an employee's 15-minute, time-weighted average exposure, shall not be exceeded at any time during a work day. The STEL is commonly referred to as the "short-term exposure limit."

History: 2002 AACS; 2013 AACS.

		MAC/Ceiling/STEL		
	Substance	ppm	mg/m ³	
	Abate		15	
	Acetaldehyde	200	360	
	Acetic acid	10	25	
	Acetic anhydride	5	20	
	Acetone	1,000	2,400	
	Acetonitrile	40	70	
	Acetylene	Inert gas		
	Acetylene dichloride, see 1,2-Dichloroethylen	e		
	Acetylene tetrabromide	1	14	
	Acrolein	0.1	0.25	
S	Acrylamide		0.3	
S	Acrylonitrile, see OH Part 307, R 325.51501	o R 325.51527*		
S	Aldrin		0.25	
S	Allyl alcohol	2	5	
	Allyl chloride	1	3	
С	Allyl glycidyl ether (AGE)	10	45	
	Allyl propyl disulfide	2	12	
	Alundum (Al ₂ 0 ₃)	Inert dust	Inert dust	
	2-Aminoethanol, see Ethanolamine			
	2-Aminopyridine	0.5	2	
	Ammonia	50	35	
	Ammonium sulfamate (amate)		15	
	n-Amyl acetate	100	525	
	sec-Amyl acetate	125	650	
S	Aniline	5	19	
S	Anisidine (o,p-isomers)		0.5	
	Antimony & compounds (as Sb)		0.5	
	ANTU (alpha naphthyl thiourea)		0.3	
	Argon	Inert gas		
	Arsenic, inorganic compounds, see OH Part 3	08, R 325.51601 to R	325.51628*	
	Arsenic, organic compounds (as As)		0.5	
	Arsine	0.05	0.2	
S	Azinphos-methyl		0.2	

R 325.60155 Maximum allowable concentrations for substances; A and B. Rule 5. Table 1. Substances A and B

Page 4

	Barium (soluble compounds)		0.5		
	Benzene (benzol), see OH Part 311, R 325.77101 to R	325.77115*	1		
A,S	Benzidine				
	p-Benzoquinone, see Quinone		•		
	Benzoyl peroxide		5		
	Benzyl chloride	1	5		
	Beryllium		0.002		
	Biphenyl, see Diphenyl				
	Bisphenol A, see Diglycidyl ether				
	Boron oxide		15		
	Boron tribromide	1	10		
С	Boron trifluoride	1	3		
	Bromine	0.1	0.7		
	Bromine pentafluoride	0.1	0.7		
S	Bromoform	0.5	5		
	Butadiene (1,3-butadiene), see OH Part 312, R 325.50091 to R 325.50092*				
	Butanethiol, see Butyl mercaptan				
	2-Butanone	200	590		
S	2-Butoxy ethanol (butyl cellosolve)	50	240		
	Butyl acetate (n-butyl acetate)	150	710		
	sec-Butyl acetate	200	950		
	tert-Butyl acetate	200	950		
	Butyl alcohol	100	300		
	sec-Butyl alcohol	150	450		
	tert-Butyl alcohol	100	300		
S,C	Butylamine	5	15		
	tert-Butyl chromate (as Cr+6), See OH Part 604, R 325.51995 to R 325.51997*, **				
	n-Butyl glycidyl ether (BGE)	50	270		
	Butyl mercaptan	0.5	1.5		
	p-tert-Butyltoluene	10	60		

C --- See R 325.60154(2)(b).

S ---- See R 325.60154(2)(c).

* Caution--these rules contain extensive requirements for exposure to these substances.

** If the exposure limit in 29 C.F.R. §1926.1126 (adopted by reference in OH Part 604, R 325.51995 to R 325.51997) is stayed or is otherwise not in effect, the exposure limit is a ceiling of 0.1 mg/m³ and has an "S" notation.

History: 2002 AACS; 2013 AACS.

R 325.60156 Maximum allowable concentrations for substances; C and D.

Rule 6. Table 2. Substances C and D

TABL	.E 2		
		MAC/Ceiling/S	TEL
	Substance	ppm	mg/m ³
	Cadmium and cadmium compounds, see OH Part 309,	R 325.51851 to 1	R 325.51886*
	Calcium arsenate		1
	Calcium carbonate	Inert dust	
	Calcium oxide		5
	Camphor (synthetic)	2	
	Carbaryl (Sevin®)		5
	Carbon black		3.5
	Carbon dioxide	5,000	9,000
S	Carbon disulfide	20	60
	Carbon monoxide	50	55
S,C	Carbon tetrachloride	10	65
	Cellulose (paper fiber)	Inert dust	
S	Chlordane		0.5
S	Chlorinated camphene		0.5
	Chlorinated diphenyl oxide		0.5
	Chlorine	1	3
	Chlorine dioxide	0.1	0.3
С	Chlorine trifluoride	0.1	0.4
С	Chloroacetaldehyde	1	3
	alpha-Chloroacetophenone (phenacylchloride)	0.05	0.3
	Chlorobenzene (monochlorobenzene)	75	350
	o-Chlorobenzylidene malononitrile (OCBM)	0.05	0.4
	Chlorobromomethane	200	1,050
	2-Chloro-1,3-butadiene, see Chloroprene		
S	Chlorodiphenyl (42% Chlorine)		1
S	Chlorodiphenyl (54% Chlorine)		0.5
	1-Chloro-2,3-epoxypropane, see Epichlorohydrin		
	2-Chloroethanol, see Ethylene chlorohydrin		
	Chloroethylene, see Vinyl chloride		
С	Chloroform (trichloromethane)	50	240
	1-Chloro-1-nitropropane	20	100
	Chloropicrin	0.1	0.7
S	Chloroprene (2-chloro-1,3-butadiene)	25	90
	Chromic acid and chromates (as Cr+6) see OH Part 604, R 325.51995 to R 325.51997*, ***		

	Chromium (VI) compounds, see OH Part 604, R 325.5	1995 to R 325.5	1997*, ***
	Chromium, sol. chromic & chromous salts (as Cr)		0.5
	Metal & insol. Salts		1
	Coal tar pitch volatiles (benzene soluble fraction: anthracene, BaP, phenanthrene, acridine, chrysene,		0.2
	pyrene)		
	Cobalt, metal fume & dust		0.1
	Coke oven emissions, see OH Part 314, R 325.50101 to	DR 325.50136*	0.1
	Copper fume		0.1
	Dusts and mists		1
	Corundum (Al ₂ 0 ₃)	Inert dust	
	Cotton dust (raw)		1
	Crag® herbicide		15
S	Cresol (all isomers)	5	22
	Crotonaldehyde	2	6
S	Cumene	50	245
S	Cyanide (as CN)		5
~	Cyanogen	10	
	Cyclohexane	300	1,050
	Cyclohexanol	50	200
	Cyclohexanone	50	200
	Cyclohexene	300	1,015
	Cyclopentadiene	75	200
	2,4-D		10
S	DDT (Dichlorodiphenyl-trichloroethane)		1
	DDVP, see Dichlorvos		
S	Decaborane	0.05	0.3
S	Demeton®		0.1
	Diacetone alcohol (4-hydroxy-4-methyl-2- pentanone)	50	240
	1,2-Diainoethane, see Ethylenediamine		
	Diazomethane	0.2	0.4
	Diborane	0.2	0.4
S,C	1,2-Dibromoethane (ethylene dibromide)	25	190
<i>р</i> ,с	Dibutyl phosphate	1	5
	Dibutyl phthalate		5
С	Dichloroacetylene	0.1	0.4
C C	o-Dichlorobenzene	50	300
C	p-Dichlorobenzene	75	450
	Dichlorodifluoromethane	1,000	4,950
			0.2
	1,3-Dichloro-5,5-dimethyl hydantoin		0.2

	1,1-Dichloroethane	100	400	
	1,2-Dichloroethane	50	200	
	1,2-Dichloroethylene	200	790	
S,C	Dichloroethyl ether	15	90	
	Dichloromethane, see Methylene chloride			
	Dichloromonofluoromethane	1,000	4,200	
С	1,1-Dichloro-1-nitroethane	10	60	
	1,2-Dichloropropane, see Propylene dichloride			
	Dichlorotetrafluoroethane	1,000	7,000	
S	Dichlorvos (DDVP)		1	
S	Dieldrin		0.25	
	Diethylamine	25	75	
S	Diethylamino, ethanol	10	50	
S,C	Diethylene triamine	10	42	
	Diethyl ether, see Ethyl ether			
	Difluorodibromomethane	100	860	
С	Diglycidyl ether (DGE)	0.5	2.8	
	Dihydroxybenzene, see Hydroquinone			
	Diisobutyl ketone	50	290	
S	Diisopropylamine	5	20	
	Dimethoxymethane, see Methylal			
S	Dimethyl acetamide	10	35	
	Dimethylamine	10	18	
	Dimethylaminobenzene, see Xylidene			
S	Dimethylaniline (N-dimethylaniline)	5	25	
	Dimethylbenzene, see Xylene			
	Dimethyl-1,2-dibromo-2,2-dichloroethylphosphate			
	(Dibrom®)		3	
S	Dimethylformamide	10	30	
	2,6-Dimethylheptanone, see Diisobutyl ketone	·	·	
S	1,1-Dimethylhydrazine	0.5	1	
	Dimethylphthalate		5	
S	Dimethylsulfate	1	5	
S	Dinitrobenzene (all isomers)		1	
S	Dinitro-o-cresol		0.2	
S	Dinitrotoluene		1.5	
S	Dioxane (diethylene dioxide)	100	360	
	Diphenyl	0.2	1	
	Diphenyl amine		10	
	Diphenylmethane diisocyanate, see Methylene bisphenyl isocyanate (MDI)			
S	Dipropylene glycol methyl ether	100	600	

 5

* Caution--these rules contain extensive requirements for exposure to these substances.

*** If the exposure limit in 29 C.F.R. §1926.1126 (adopted by reference in OH Part 604, R 325.51995 to R 325.51997) is stayed or is otherwise not in effect, the exposure limit is 0.1 mg/m³ for chromic acid and chromates (Cr+6) as an 8-hour TWA.

History: 2002 AACS; 2013 AACS.

R 325.60157 Maximum allowable concentrations for substances; E to H. Rule 7. Table 3. Substances E to H

	Call address of	MAC/Cei	MAC/Ceiling/STEL	
	Substance	ppm	mg/m ³	
	Emery	Inert dust		
S	Endosulfan (Thiodan®)		0.1	
S	Endrin		0.1	
S	Epichlorohydrin	5	19	
S	EPN		0.5	
	1,2-Epoxypropane, see Propylene oxide			
	2,3-Epoxy-1-propanol, see Glycidol			
	Ethane	Inert gas		
	Ethanethiol, see Ethyl mercaptan			
	Ethanolamine	3	6	
S	2-Ethoxyethanol	200	740	
S	2-Ethoxyethylacetate (cellosolve acetate)	100	540	
	Ethyl acetate	400	1,400	
S	Ethyl acrylate	25	100	
	Ethyl alcohol (ethanol)	1,000	1,900	
	Ethylamine	10	18	
	Ethyl sec-amyl ketone (5-methyl-3-heptanone)	25	130	
	Ethyl benzene	100	435	
	Ethyl bromide	200	890	
	Ethyl butyl ketone (3-heptanone)	50	230	
	Ethyl chloride	1,000	2,600	
	Ethyl ether	400	1,200	
	Ethyl formate	100	300	
	Ethyl mercaptan	0.5	1	
	Ethyl silicate	100	850	

	Ethylene	Inert gas			
S	Ethylene chlorohydrin	5	16		
	Ethylenediamine	10	25		
	Ethylene dibromide, see 1,2-Dibromoethane				
	Ethylene dichloride, see 1,2-Dichloroethane				
S,C	Ethylene glycol dinitrate and/or Nitroglycerin	0.2			
,	Ethylene glycol monomethyl ether acetate, see Met	hyl cellosolve ace	etate		
S	Ethyleneimine	0.5	1		
	Ethylene oxide, see OH Part 304, R 325.51151 to R	R 325.51177*			
	Ethylidine chloride, see 1,1-Dichloroethane				
S	N-Ethylmorpholine	20	94		
	Ferbam		15		
	Ferrovanadium dust		1		
	Fibrous glass	Inert dust			
	Fluoride (as F)		2.5		
	Fluorine	0.1	0.2		
	Fluorotrichloromethane	1,000	5,600		
e	Formaldehyde, see OH Part 306, R 325.51451 to R 325.51477*				
	Formic acid	5	9		
S	Furfural	5	20		
	Furfuryl alcohol	50	200		
	Gasoline (limits will be based on aromatic hydrocarbons in mixture)				
	Glycerine mist				
	Glycidol (2,3-epoxy-1-propanol)	50	150		
	Glycol monoethyl ether, see 2-Ethoxyethanol				
	Graphite (synthetic)	Inert dust			
	Guthion®, see Azinphos-methyl				
	Gypsum	Inert dust			
	Hafnium		0.5		
	Helium	Inert gas	•		
S	Heptachlor		0.5		
	Heptane (n-heptane)	500	2,000		
S	Hexachloroethane	1	10		
S	Hexachloronaphthalene		0.2		
	Hexane (n-hexane)	500	1,800		
	2-Hexanone	100	410		
	Hexone (methyl isobutyl ketone)	100	410		
	sec-Hexyl acetate	50	300		
S	Hydrazine	1	1.3		
	Hydrogen	Inert gas	•		
	Hydrogen bromide	3	10		

С	Hydrogen chloride	5	7
S	Hydrogen cyanide	10	11
	Hydrogen fluoride	3	2
	Hydrogen peroxide	1	1.4
	Hydrogen selenide	0.05	0.2
	Hydrogen sulfide	10	15
	Hydroquinone		2

C --- See R 325.60154(2)(b).

S --- See R 325.60154(2)(c).

* Caution--these rules contain extensive requirements for exposure to these substances.

History: 2002 AACS; 2013 AACS.

R 325.60158 Maximum allowable concentrations for substances; I to M.

Rule 8. Table 4. Substances I to M

	Cubatanaa	MAC/Cei	MAC/Ceiling/STEL	
	Substance	ppm	mg/m ³	
	Indene	10	45	
	Indium and compounds (as In)		0.1	
С	Iodine	0.1	1	
	Iron oxide fume		10	
	Iron salts, soluble (as Fe)		1	
	Isoamyl acetate	100	525	
	Isoamyl alcohol	100	360	
	Isobutyl acetate	150	700	
	Isobutyl alcohol	100	300	
	Isophorone	25	140	
	Isopropyl acetate	250	950	
	Isopropyl alcohol	400	980	
	Isopropylamine	5	12	
	Isopropyl ether	500	2,100	
	Isopropyl glycidyl ether (IGE)	50	240	
	Kaolin	Inert dust		
	Ketene	0.5	0.9	
	Lead and lead compounds, see OH Part 603,	R 325.51991 to R 325.	51992*	
	Limestone	Inert dust		
S	Lindane		0.5	
	Lithium hydride		0.025	

	L.P.G. (liquified petroleum gas)	1,000	1,800		
	Magnesite	Inert dust			
	Magnesium oxide fume	15			
S	Malathion		15		
	Maleic anhydride	0.25	1		
С	Manganese and compounds (as Mn)		5		
	Marble	Inert dust			
S	Mercury		0.1		
S	Mercury (organic compounds)		0.01		
	Mesityl oxide	25	100		
	Methane	Inert gas	·		
	Methanethiol, see Methyl mercaptan				
	Methoxychlor		15		
	2-Methoxyethanol, see Methyl cellosolve	·			
	Methyl acetate	200	610		
	Methyl acetylene (propyne)	1,000	1,650		
	Methyl acetylene-propadiene mixture (MAPP)	1,000	1,800		
S	Methyl acrylate	10	35		
	Methylal (dimethoxymethane)	1,000	3,100		
	Methyl alcohol (methanol)	200	260		
	Methylamine	10	12		
	Methyl amyl alcohol, see Methyl isobutyl carbinol				
	Methyl (n-amyl) ketone (2-heptanone)	100	465		
S,C	Methyl bromide	20	80		
,	Methyl butyl ketone, see 2-Hexanone		I		
S	Methyl cellosolve	25	80		
S	Methyl cellosolve acetate	25	120		
С	Methyl chloride	100	210		
	Methyl chloroform	350	1,900		
	Methylcyclohexane	500	2,000		
	Methylcyclohexanol	100	470		
S	o-Methylcyclohexanone	100	460		
	Methylenedianiline (MDA), see OH Part 303, R 325.50051 to R 325.50076*				
	Methyl ethyl ketone (MEK), see 2-Butanone				
	Methyl formate	100	250		
S	Methyl iodide	5	28		
-	Methyl isoamyl ketone	100	475		
S	Methyl isobutyl carbinol	25	100		
	Methyl isobutyl ketone, see Hexone				
S	Methyl isocyanate	0.02	0.05		
			~.~~		

	Methyl methacrylate	100	410
	Methyl propyl ketone, see 2-Pentanone		
С	Methyl silicate	5	30
С	alpha-Methyl styrene	100	480
С	Methylene bisphenyl isocyanate (MDI)	0.02	0.2
	Methylene chloride (dichloromethane), see OH R 325.51652*	Part 313, R 3	325.51651 to
	Molybdenum (soluble compounds) (insoluble compounds)		5 15
S	Monomethyl aniline	2	9
S,C	Monomethyl hydrazine	0.2	0.35
S	Morpholine	20	70

C --- See R 325.60154(2)(b).

S --- See R 325.60154(2)(c).

STEL --- See R 325.60154(d).

* Caution--these rules contain extensive requirements for exposure to these substances.

History: 2002 AACS; 2013 AACS.

R 325.60159 Maximum allowable concentrations for substances; N to P.

Rule 9. Table 5. Substances N to P

TAR	TF 5			
141		MAC/Ceiling/STEL		
	Substance	ppm	mg/m ³	
	Naphtha (coal tar)	100	400	
	Naphtha (petroleum) (MAC will be based on aroma	atic hydrocarbons	in mixture)	
	Naphthalene	10	50	
А	beta-Naphthylamine			
	Neon	Inert gas	Inert gas	
	Nickel carbonyl	0.001	0.007	
	Nickel, metal and soluble compounds (as Ni)		1	
S	Nicotine		0.5	
	Nitric acid	2	5	
	Nitric oxide	25	30	
S	p-Nitroaniline	1	6	
S	Nitrobenzene	1	5	
S	p-Nitrochlorobenzene		1	
	Nitroethane	100	310	
	Nitrogen	Inert gas		

Nitrogen dioxide	5	9	
		29	
		2	
		250	
		90	
		90	
		70	
	5	30	
	U	20	
-			
		0.1	
	400	1,900	
		5	
	rocarbons in mi	-	
		0.002	
		1	
	0.05	0.1	
		0.2	
		0.5	
		0.1	
	0.005	0.01	
		0.5	
*		0.5	
	Inert partie		
Pentane	500	1,500	
2-Pentanone	200	700	
	100	670	
-	0.1	0.8	
	3	13.5	
Petroleum distillates (naphtha) (MAC will be based on aromatic hydrocarbons in			
	5	19	
		0.1	
	1	7	
		7	
	1	/	
	10	60	
		22	
Phenylhydrazine			
Phenylhydrazine Phosdrin (Meyinphos®)			
Phenylhydrazine Phosdrin (Mevinphos®) Phosgene (carbonyl chloride)	0.1	0.1	
	Osmium tetroxideOxalic acidOxygen difluorideOzoneParaquatParathionPentaboranePentachloronaphthalenePentachlorophenolPentaerythritolPentane2-PentanonePerchloroethylenePerchloromethyl mercaptanPerchloryl fluoridePetroleum distillates (naphtha) (MAC will be bas mixture)Phenolp-Phenylene diaminePhenyl ether (vapor)Phenyl ether-biphenyl mixture (vapor)Phenyl glycidyl ether (PGE)	Nitrogen trifluoride10Nitroglycerin0.2Nitromethane1001-Nitropropane252-Nitropropane252-Nitrosodimethylamine (dimethylnitrosomine)Nitrotoluene5Nitrotrichloromethane, see ChloropicrinNitrous oxideInert gasOctachloronaphthaleneOctane400Oil mist, particulateOxalic acidOxalic acidOxagen difluoride0.05Ozone0.1ParaquatPentaborane0.005PentachloronaphthalenePentachloronaphthaleneOxalic acidOxalic acidPentachloronaphthalenePentachloronaphthalenePentachloronaphthalenePentachloronaphthalenePentachloronaphthalenePentachloronaphthalenePentane5002-Pentanone200Perchloroethylene100Perchloromethyl mercaptan0.1Perchloromethyl mercaptan0.1Percloromethyl mercaptan5p-Phenylene diaminePhenol5p-Phenylene diaminePhenyl ether (vapor)1Phenyl ether-biphenyl mixture (vapor)1Phenyl ether-biphenyl mixture (vapor)1Phenyl glycidyl ether (PGE)10	

	Phosphoric acid		1	
	Phosphorus (yellow)		0.1	
	Phosphorus pentachloride		1	
	Phosphorus pentasulfide		1	
	Phosphorus trichloride	0.5	3	
	Phthalic anhydride	2	12	
S	Picric acid		0.1	
	Pival® (2-pivalyl-1,3-indandione)		0.1	
	Plaster of Paris	Inert dust	Inert dust	
	Platinum, soluble salts (as Pt)		0.002	
	Polytetrafluoroethylene decomposition products, see Teflon® decomposition products			
	Propane	Inert gas		
S	Propargyl alcohol	1		
А	beta-Propiolactone			
	n-Propyl acetate	200	840	
	Propyl alcohol	200	500	
	n-Propyl nitrate	25	110	
	Propylene bichloride	75	350	
S	Propylene imine	2	5	
	Propylene oxide	100	240	
	Propyne, see Methyl acetylene			
	Pyrethrum		5	
	Pyridine	5	15	
		•		

C --- See R 325.60154(2)(b).

S --- See R 325.60154(2)(c).

History: 2002 AACS; 2013 AACS.

R 325.60160 Maximum allowable concentrations for substances; Q to Z.

Rule 10. Table 6. Substances Q to Z

TAR	TARIF 6				
	Substance	MAC/Ceiling/STEL			
		ppm	mg/m ³		
	Quinone	0.1	0.4		
S	RDX		1.5		
	Rhodium, metal fume, dusts, and insoluble compounds (as Rh)		0.1		
	Rhodium, soluble compounds (as Rh)		0.001		
	Ronnel		10		
	Rotenone (commercial)		5		

	Rouge	Inert dust	Inert dust	
	Selenium compounds (as Se)		0.2	
	Selenium hexafluoride	0.05	0.4	
	Silicon carbide	Inert dust		
	Silver, metal and soluble compounds		0.01	
S	Sodium fluoroacetate (1080)		0.05	
	Sodium hydroxide		2	
	Starch	Inert dust		
	Stibine	0.1	0.5	
	Stoddard solvent	200	1,150	
	Strychnine		0.15	
С	Styrene monomer (phenylethylene)	100	420	
	Sucrose	Inert dust	·	
	Sulfur dioxide	5	13	
	Sulfur hexafluoride	1,000	6,000	
	Sulfuric acid		1	
	Sulfur monochloride	1	6	
	Sulfur pentafluoride	0.025	0.25	
	Sulfuryl fluoride	5	20	
	Systox, see Demeton®			
	2,4,5T		10	
	Tantalum		5	
S	TEDP		0.2	
	Teflon® decomposition products (maintain minimal air concentration)			
	Tellurium		0.1	
	Tellurium hexafluoride	0.02	0.2	
S	TEPP		0.05	
С	Terphenyls	1	9	
	1,1,1,2-Tetrachloro-2,2-difluoroethane	500	4,170	
	1,1,2,2-Tetrachloro-1,2-difluoroethane	500	4,170	
S	1,1,2,2-Tetrachloroethane	5	35	
	Tetrachloroethylene, see Perchloroethylene			
	Tetrachloromethane, see Carbon tetrachloride			
S	Tetrachloronaphthalene		2	
S	Tetraethyl lead (as Pb)		0.075 ^a	
	Tetrahydrofuran	200	590	
S	Tetramethyl lead (TML) (as Pb)		0.150	
S	Tetramethyl succinonitrile	0.5	3	
	Tetranitromethane	1	8	
S	Tetryl (2,4,6-trinitrophenylmethyl-nitramine)		1.5	
S	Thallium, soluble compounds (as Tl)		0.1	

	Thiram		5		
	Tin		2		
	(inorganic compounds, except SnH ₄ and SnO ₂)		2 0.1		
	(organic compounds)		0.1		
	Tin oxide	Inert particula	nte		
	Titanium dioxide	Inert particula	nte		
	Toluene (toluol)	200	750		
С	Toluene-2,4-diisocyanate	0.02	0.14		
S	o-Toluidine	5	22		
	Toxaphene, see Chlorinated camphene				
	Tributyl phosphate		5		
	1,1,1-Trichloroethane, see Methyl chloroform	1			
S	1,1,2-Trichloroethane	10	45		
	Trichloroethylene	100	535		
	Trichloromethane, see Chloroform	ı	-		
S	Trichloronaphthalene		5		
	1,2,3-Trichloropropane	50	300		
	1,1,2-Trichloro-1,2,2-trifluoroethane	1,000	7,600		
	Triethylamine	25	100		
	Trifluoromonobromomethane	1,000	6,100		
	Trimethyl benzene	25	120		
	2,4,6-Trinitrophenol, see Picric acid				
	2,4,6-Trinitrophenylmethylnitramine, see Tetryl				
S	Trinitrotoluene		1.5		
	Triorthocresyl phosphate		0.1		
	Triphenyl phosphate		3		
	Tungsten and compounds (as W)				
	Insoluble		5		
	Soluble		1		
	Turpentine	100	560		
	Uranium (natural) soluble & insoluble compounds (as		0.2		
	U)		0.2		
С	Vanadium		0.5		
	$(V_2O_5 dust)$		0.1		
	(V ₂ O ₅ fume)				
C	Vinyl benzene, see Styrene	F A AA A-1-			
С	Vinyl chloride, see OH Part 302, R 325.51401 to R 325.51414*				
	Vinyl cyanide, see Acrylonitrile				
	Vinyl toluene	100	480		
	Warfarin		0.1		
	Xylene (xylol)	100	435		
S	Xylidine Page 17	5	25		

Yttrium	 1
Zinc chloride fume	 1
Zinc oxide fume	 5
Zirconium compounds (as Zr)	 5

- A --- See R 325.60154(2)(a).
- C --- See R 325.60154(2)(b).
- S --- See R 325.60154(2)(c).
- STEL --- See R 325.60154(2)(d)
- ^a The 1970 ACGIH standard for Tetraethyl lead is 0.100 mg/m³.
- * Caution--these rules contain extensive requirements for exposure to these substances.

History: 2002 AACS; 2013 AACS.

R 325.60161 Maximum allowable concentrations for mineral dusts.

Rule 11. Table 7. Mineral dusts

TARLE 7		
	MAC	
Substance	mppcf	mg/m ³
Silica		
Crystalline *		
Quartz (respirable)	250 % SiO ₂ +5	$\frac{10 \text{ mg/m}^3}{\% \text{SiO}_2 + 2}$
Cristobalite, see crystalline quartz		
Amorphous, including natural diatomaceous earth	20	$\frac{80 \text{ mg/m}^3}{\% \text{SiO}_2}$
Silicates (less than 1% crystalline silica)		
Asbestos, all types, see OH Part 602, R 325.51301 to	R 325.51302	
Mica	20	
Portland cement	50	
Soapstone	20	
Talc (non-asbestiform)	20	
Talc (fibrous), see OH Part 602, R 325.51301 to R 32	25.51302	
Tremolite, see OH Part 602, R 325.51301 to R 325.5	1302	
Graphite (natural)	15	
Inert or nuisance particles **	50 of total dust less than 1% SiO ₂ (or 15 mg/m ³ , whichever is the smaller)	

- * The percentage of crystalline silica, SiO_2 , in the formula is the amount determined from airborne samples.
- ** The following are some examples of inert or nuisance particulates when toxic impurities are not present; e.g. quartz less than 1%.

Alundum (A1₂0₃) Calcium carbonate Cellulose Corundum (A1₂0₃) Emery Glycerine mist Graphite (synthetic) Gypsum Limestone Magnesite Marble Pentaerythritol Plaster of Paris Portland cement Rouge Silicon carbide Starch Sucrose Tin oxide Titanium dioxide Vegetable oil mists (except castor, cashew nut, or similar irritant oils)

History: 2002 AACS; 2013 AACS.